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4201. There are 63 = 216 outcomes in the possibility
space. Consider the outcomes in which the first
two X + Y add up to the third Z, classified by the
value of Z:

Z (X, Y )
1 None
2 (1, 1)
3 (1, 2), (2, 1)
4 (1, 3), (2, 2), (3, 1)
5 (1, 4), (2, 3), (3, 2), (4, 1)
6 (1, 5), (2, 4), (3, 3), (4, 2), (5, 1)

There are 15 outcomes with Z largest. There are
also 15 with X largest and 15 with Y largest. So,
the probability is 45/216. This is5/24, as required.

4202. The normal to the curve at
(
p, p2)

has equation

y − p2 = − 1
2p (x − p)

=⇒ y = − 1
2p x + 1

2 + p2.

Solving this simultaneously with y = x2,

x2 = − 1
2p x + 1

2 + p2

=⇒ x2 + 1
2p x − 1

2 − p2 = 0
=⇒ 2px2 + x − p − 2p3 = 0
=⇒ x = p, −p − 1

2p .

So, the x component of the length of the chord is

sx = p −
(
−p − 1

2p

)
= 2p + 1

2p .

Since both terms are positive, sx > 2p. So, the
length of the chord is greater than 2p, as required.

Alternative Method

Consider the symmetry of the scenario. The chord
is normal to the curve. And the gradient of the
curve is positive in the positive quadrant. So, the
gradient of the chord is negative, meaning that the
y coordinate of the other endpoint is greater than
p2. Call it q2.

x

y

(
p, p2)(

q, q2)
p

|q| > p

We know that |q| > p, as shown in the diagram.
So, p − q > 2p, as required.

4203. (a) The least possible value of f(x) + g(x) is a + b,
and the greatest possible value is c + d. Any
values in between these two may be attainable.
So, the smallest set which can be guaranteed
to contain the range is the interval [a+b, c+d].

(b) The least possible value of f(x) − g(x) is a − d

and the greatest is c − b. Again, any values
in between these two may be attainable. So,
the smallest set which can be guaranteed to
contain the range is the interval [a − d, c − b].

4204. (a) The logarithm curves are reflections of y = 2x

and y = 3x in the line y = x. They cross at
(1, 0). The curve y = log3 x is shown dashed:

x

y

(1, 0)

(b) Raising base and input of y = loga x to the
power loga b gives

y = logb xloga b

=⇒ y = loga b × logb x.

Hence, y = loga x is a stretch, by scale factor
loga b in the y direction, of y = logb x.

4205. For parts, let u = 3x − 6 and dv
dx = (2x + 3)− 1

2 .
This gives du

dx = 3 and v = (2x+3) 1
2 . Substituting

into the parts formula,∫ 3x − 6√
2x + 3

dx

= (3x − 6)(2x + 3) 1
2 −

∫
3(2x + 3) 1

2 dx

= (3x − 6)(2x + 3) 1
2 − (2x + 3) 3

2 + c

≡
(
3x − 6 − (2x + 3)

)
(2x + 3) 1

2 + c

≡ (x − 9)
√

2x + 3 + c, as required.

Alternative Method

Let u = 2x+3, so that 1
2 du = dx and x = 1

2 (u−3).
Enacting the substitution,∫ 3x − 6√

2x + 3
dx

=
∫ 3

2 (u − 3) − 6
√

u
· 1

2 du

=
∫

3
4 u

1
2 − 21

4 u− 1
2 du.
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Integrating term by term, this is

1
2 u

3
2 − 21

2 u
1
2 + c

≡
( 1

2 u − 21
2

)
u

1
2 + c

=
( 1

2 (2x + 3) − 21
2

)
(2x + 3) 1

2 + c

≡ (x − 9)
√

2x + 3 + c, as required.

4206. (a) The gradient at (p, ep) is ep. So, tan θ = ep.
This gives

tan2 θ = e2p

=⇒ cot2 θ = e−2p

=⇒ 1 + cot2 θ = 1 + e−2p

=⇒ cosec2 θ = 1 + e−2p

=⇒ sin2 θ = 1
1 + e−2p

≡ e2p

e2p + 1 , as required.

4207. Assume, for a contradiction, that 3
√

2 is rational,
so can be written as p/q, where p, q ∈ N. Let p

have m factors of 2, and q have n factors of 2.

3
√

2 = p

q

=⇒ 2 = p3

q3

=⇒ 2q3 = p3.

Consider the number of factors of 2 on each side of
the above equation. Setting this up as an equation:

1 + 3m = 3n.

The rhs is a multiple of 3, but the lhs isn’t. This
is a contradiction. Hence, 3

√
2 is irrational.

Alternative Method

Assume, for a contradiction, that 3
√

2 is rational,
so can be written as p

q , where p and q are integers
with hcf(p, q) = 1.

3
√

2 = p

q

=⇒ 2 = p3

q3

=⇒ 2q3 = p3.

The lhs is even, so the rhs is even. This implies
that p is even. Write it as p = 2k. Substituting in,

2q3 = (2k)3 = 8k3

=⇒ q3 = 4k3.

Since the rhs is even, q must be even. So, p and
q have a common factor of 2. This contradicts
hcf(p, q) = 1. Hence, 3

√
2 is irrational.

4208. (a) We are given that a ∝ v2, so a = kv2 for some
constant k. As a de in v and t, this is

dv

dt
= kv2

=⇒ 1
v2

dv

dt
= k

=⇒
∫ 1

v2
dv

dt
dt =

∫
k dt.

(b) The lhs of the above simplifies according to
the (integral) chain rule, giving∫ 1

v2 dv =
∫

k dt

=⇒ −v−1 = kt − c

=⇒ v−1 = c − kt

=⇒ v = 1
c − kt

, as required.

4209. The boundary equation is sec x = cosec x. Taking
the reciprocal of both sides, this is

sin x = cos x

=⇒ tan x = 1
=⇒ x = π

4 + nπ.

The functions sec and cosec also have sign changes
at asymptotes. So, we sketch the graphs y = sec x

and y = cosec x (dashed):

x

y

The intersections marked are at π/4 and 5π/4, and
the vertical asymptotes are at multiples of π/2. We
need the x values at which both curves are well
defined, and the dashed curve is above the solid
curve. This is

x ∈
(
0, π

4
)

∪
(

π
2 , π

)
∪

( 5π
4 , 3π

2
)
.

4210. For intersections,

4x2 − 2 = x4 + k

=⇒ x4 − 4x2 + k + 2 = 0.

This is a quadratic in x2. For the graphs to be
tangent, we require a double root. This can either
occur if x2 = 0 is a root of the quadratic, or if the
quadratic has discriminant ∆ = 0.
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1 For x2 = 0, we require the biquadratic to
have no constant term, so k = −2. In this
case, x2(x2 − 4) = 0; the curves are tangent
at x = 0.

2 For ∆ = 0, we require 16 − 4(k − 2) = 0, so
k = 2. In this case, (x2 − 2)2 = 0; the curves
are tangent at ±

√
2.

So, k = ±2.

4211. Call the central point X.

A B

CD

X

Since X is the midpoint of the diagonals, we know
that #    „

AX = #    „

XC and #     „

DX = #    „

XB. Therefore,

#    „

AB = #    „

AX + #    „

XB

= #    „

XC + #     „

DX

= #    „

DC.

Hence, ABCD is a parallelogram. qed.

4212. (a) P(A | B) cannot be calculated.

(b) P(B | A) = 0.1
0.2 = 0.5.

(c) P(A ∩ C) cannot be calculated.

(d) P(B ∩ C | A) = 0.05
0.2 = 0.5.

4213. The function is a positive octic, so its range is of
the form [a, ∞). The minimum value occurs at the
minimum of the quadratic 1 + x + x2. Completing
the square,

x2 + x + 1 ≡
(
x + 1

2
)2 + 3

4 .

Hence, the minimum value of the octic is (3/4)4.
So, its range is

[
81/256, ∞

)
.

4214. Since θ ∈ [0, π/36] and is therefore small, we can
use a small-angle approximation: cos θ ≈ 1 − 1

2 θ2.
Also, the binomial expansion, neglecting terms
higher than θ2, gives(

1 + θ2)−1 = 1 − θ2 + ....

Combining these,

f(θ) ≈
(
1 − 1

2 θ2)(
1 − θ2)

≈ 1 − 3
2 θ2.

Approximating the integral,∫ π
36

0

cos θ

1 + θ2 dθ

≈
∫ π

36

0
1 − 3

2 θ2 dθ

=
[
θ − 1

2 θ3
] π

36

0

= 0.0869 (3sf).

4215. Differentiating implicitly,

(x − k)(y − k) + x2y2 = 0
=⇒ (y − k) + (x − k) dy

dx + 2xy2 + 2x2y dy
dx = 0.

So, for sps, y − k + 2xy2 = 0. Rearranging this,

x = k − y

2y2 .

Substituting into the original equation,(
k − y

2y2 − k

)
(y − k) +

(
k − y

2y2

)2
y2 = 0.

Either y = k, or(
k − y

2y2 − k

)
− k − y

4y2 = 0

=⇒ 2k − 2y − 4ky2 − (k − y) = 0
=⇒ 4ky2 + y − k = 0

=⇒ y = −1 ±
√

1 + 16k2

8k
.

When k is large and positive,

y ≈ ±
√

16k2

8k
= ± 1

2 , as required.

4216. The derivative of a f(x)+b is a f ′(x). The top of the
fraction is f ′(x), which is a multiple of this, so we
can integrate by the reverse chain rule (integration
by inspection): ∫ f ′(x)

(a f(x) + b)2 dx

= 1
a

∫
a f ′(x)

(a f(x) + b)2 dx

= 1
a

· − 1
(a f(x) + b) + c

≡ − 1
a(a f(x) + b) + c.

Nota Bene

As with all integration by inspection, the logic of
the above is best understood by performing the
relevant calculations in reverse: differentiating by
the chain rule.
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4217. Assuming that the string is light, the tension in the
vertical section of string is T = kmg. Assuming
that the pulley is smooth, the tension throughout
the string is T = kmg. For the boundary case in
which the block is on the point of sliding up the
slope, the forces for the block on the slope are

mg

T = kmg

R

Fmax
θ

Resolving perpendicular to the slope,

R = mg cos θ = 4
5 mg.

So, Fmax = µR = 1
5 mg. Parallel to the slope,

kmg − 1
5 mg − mg sin θ = 0

=⇒ k = 4
5 .

Assuming instead that the block is on the point of
sliding down the slope, the force diagram is

mg

kmg + Fmax

R

θ

Resolving parallel to the slope,

kmg + 1
5 mg − mg sin θ = 0

=⇒ k = 2
5 .

So, the ratio of masses satisfies k ∈
[

2/5, 4/5
]
.

4218. We can take the index i out of the j-indexed sum,
as it is a constant as far as j is concerned:

S =
n∑

i=1

 n∑
j=1

ij


≡

n∑
i=1

i

n∑
j=1

j

 .

We sum over j, using the standard result for the
sum of the first n integers. The sum 1

2 n(n + 1) is
then a common factor in the i-indexed sum:

S =
n∑

i=1

(
i · 1

2 n(n + 1)
)

≡ 1
2 n(n + 1)

n∑
i=1

i

≡
( 1

2 n(n + 1)
)( 1

2 n(n + 1)
)

≡ 1
4 n2(n + 1)2, as required.

4219. Using log rules, we rewrite the first equation:

log2 x + 2 log4 y = 1
=⇒ log2 x + log4 y2 = 1
=⇒ log2 x + log2 y = 1
=⇒ log2(xy) = 1
=⇒ xy = 2.

Solving this with x + y = 3 gives (1, 2) or (2, 1).

4220. The equation for intersections is

ex − ex cos x = 0
=⇒ ex(1 − cos x) = 0.

The latter factor has infinitely many roots, in ap.
Furthermore, since the range of 1 − cos x is [0, 2],
the sign of ex(1 − cos x) never changes: it is non-
negative everywhere. So, the graph y = ex remains
at or above y = ex cos x everywhere. Hence, every
point of intersection must be a point of tangency.
Not to scale, the behaviour is

x

y

4221. For each square along the left-hand and top edges,
the number of paths leading there is 1. For every
other square, the number of paths is the sum of
the number of paths to the squares immediately
above and to the left of it. The first few numbers
are shown:

1 1 1 1 1 1 1 1

1
1
1
1
1
1
1 2 3

3
4

6
4

As can be seen, these are the rules for generating
Pascal’s triangle. Hence, the number of ways of
reaching the bottom-right corner is 14C7 = 3432.

Alternative Method
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We may assume, without loss of generality, that
the rook moves one square at a time. Longer
moves do not produce distinct paths. To reach the
bottom-right corner, 14 moves are required, which
must consist of 7 downward moves and 7 rightward
moves. There are 14C7 = 3432 orders.

4222. Setting y = 0 for the limits of the integral,

1.5236x8 − 2.0767x3 − 6.8814 = 0.

This is not analytically solvable. So, we set up
N-R. The iteration is

xn+1 = xn − 1.5236x8
n − 2.0767x3

n − 6.8814
12.1888x7

n − 6.2301x2
n

.

Running this with starting points x0 = ±5 gives
the x intercepts as x = 1.28436 and x = −1.12543.
So, the signed area is calculated by

S =
∫ 1.28436

−1.12543
1.5236x8 − 2.0767x3 − 6.8814 dx.

The definite integration facility on a calculator
gives S = −15.06.... So, to 3sf, the area enclosed
is 15.1 square units.

4223. Solving algebraically,

x2(2x + k) − 1 = 0
=⇒ 2x3 + kx2 − 1 = 0.

Consider y = 2x3 +kx2 −1. For this cubic to have
exactly two real roots, it must have a stationary
point on the x axis. For sps,

6x2 + 2kx = 0
=⇒ x = 0, − k

3 .

Testing x = 0 in the original equation, 1 = 0, so
this is not the double root. Testing x = − k

3 in the
original equation,(

− k
3
)2 − 1

− 2k
3 + k

= 0

=⇒ k = 3.

At k = 3, the equation has a double root at x = −1
and a single root at x = 1

2 .

4224. The iteration is Newton-Raphson for the equation
f ′(x) = 0. Hence, if it converges to α, then x = α

must be a root of f ′(x) = 0. So, f ′(α) = 0.

4225. (a) Two cubics with the same leading coefficient
need not intersect. For instance, y = x3 and
y = x3 + 1.

(b) This true for k ∈ N, but not for k ∈ Z−. With
k = −1, the graph is the standard reciprocal
y = 1

x , which does not intersect the x axis.

4226. Translating into algebra,∫ k

0
4x

1
3 + 2x− 1

3 dx = 18

=⇒
[
3x

4
3 + 3x

2
3

]k

0
= 18

=⇒ 3k
4
3 + 3k

2
3 − 18 = 0

=⇒ (k 2
3 + 3)(k 2

3 − 2) = 0

=⇒ k
2
3 = −3, 2.

Since k
2
3 > 0, we reject the first root. The second

root gives k =
√

8.

4227. (a) Multiplied by 3
√

2 − 1, the denominator is( 3
√

2 + 1
)( 3

√
2 − 1

)
≡ 2 2

3 − 1.

The first term is irrational, so the given factor
fails to rationalise the denominator.

(b) Multiplying top and bottom by 2 2
3 − 2 1

3 + 1,

1
3
√

2 + 1

= 2 2
3 − 2 1

3 + 1(
3
√

2 + 1
)(

2 2
3 − 2 1

3 + 1
)

= 2 2
3 − 2 1

3 + 1
3 .

The denominator is rationalised.

4228. (a) By the chain rule,

d2y

dx2 = d

dx

(
dy

dx

)
≡ d

dt

(
dy

dx

)
× dt

dx

≡
d
dt

(
dy
dx

)
dx
dt

, as required.

(b) Differentiating, dx
dt = 2t and dy

dt = 1 + 3t2. So,

dy

dx
= 1 + 3t2

2t

≡ 1
2 t−1 + 3

2 t.

Using the formula in part (a),

d2y

dx2 ≡
d
dt

(
dy
dx

)
dx
dt

=
d
dt

( 1
2 t−1 + 3

2 t
)

2t

≡
− 1

2 t−2 + 3
2

2t

≡
− 1

2 + 3
2 t2

2t3 .
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Setting the numerator to zero,

− 1
2 + 3

2 t2 = 0
=⇒ t2 = 3.

This has single roots at t = ±
√

3. Also, the
denominator does not change sign. So, these
are points of inflection. Subbing t values, the
coordinates of the points of inflection are(

1
3 , ± 4

3
√

3

)
.

4229. Since #    „

AB is parallel to i + 3j, we know that ∆y is
three times ∆x:

−ek − ek = 3
(
e−k − ek

)
=⇒ ek = 3e−k

=⇒ e2k = 3
=⇒ k = 1

2 ln 3
= ln

√
3, as required.

4230. The possibility space is a cube of side length 1.

(0, 0, 0)

(1, 0, 0)(0, 1, 0)

(0, 0, 1)

The successful region is bounded by the equilateral
triangle shown. The region is a triangular-based
pyramid. Six such pyramids tessellate to fill the
cube. Hence, the probability that the coordinates
add to less than 1 is 1/6.

4231. At P , the horizontal and vertical components
of velocity are

√
2 ms−1. The height at P is

1.5 − 1.2 cos 45°. The vertical suvat is

−(1.5 − 1.2 cos 45°) =
√

2t − 1
2 gt2

=⇒ t = −0.247838, 0.536453.

We take the positive value t = 0.536453 as the
time of flight. At P , the ball has already travelled
1.2 + 1.2 sin 45° horizontally. So,

d = 1.2 + 1.2 sin 45° +
√

2 × 0.536453
= 2.81 (3sf).

4232. (a) Using the definition,

A1(x) + A2(x) = 0

∴
x + 1
x − 1 + 2x + 1

2x − 1 = 0

=⇒ (x + 1)(2x − 1) + (2x + 1)(x − 1) = 0

=⇒ x = ±
√

2
2 .

(b) The definition gives

A1(x) A2(x) = (x + 1)(2x + 1)
(x − 1)(2x − 1) .

In partial fractions, this is

1 + 6
1 − 2x

− 6
1 − x

≡ 1 + 6(1 − 2x)−1 − 6(1 − x)−1.

The quadratic binomial expansions are

(1 − 2x)−1 = 1 + 2x + 4x2 + ...,

(1 − x)−1 = 1 + x + x2 + ....

So, the overall quadratic approximation is

1 + 6
(
1 + 2x + 4x2)

− 6
(
1 + x + x2)

≡ 1 + 6x + 18x2.

4233. (a) The denominator has a root at x = 4.5, so
this is the vertical asymptote. Rewriting as a
proper algebraic fraction,

6x + 1
2x − 9 ≡ 3(2x − 9) + 28

2x − 9

≡ 3 + 28
2x − 9 .

As x → ±∞, y → 3. So, there is a horizontal
asymptote at y = 3.

(b) Using the quotient rule,

dy

dx
= 6(2x − 9) − 2(6x + 1)

(2x − 9)2

≡ −56
(2x − 9)2 .

This is non-zero, so there are no sps.
(c) The graph is a transformed reciprocal y = 1

x :

x

y

3

9
2

4234. Rewriting over base 2,

2sin x = 4cos x

=⇒ 2sin x = 22 cos x

=⇒ sin x = 2 cos x

=⇒ tan x = 2.

So, for x ∈ [0, π), x = arctan 2.
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4235. (a) Solving for intersections,

x4 − 2x3 = −2x + 1
=⇒ x4 − 2x3 + 2x − 1 = 0
=⇒ (x + 1)(x − 1)3 = 0.

Since the root at x = 1 is repeated, (1, −1) is
a point of tangency.

(b) The root at x = 1 is a triple root. Since the
parity of the root is odd (multiplicity 3), curve
and line cross at their point of tangency.

x

y

(1, −1)

4236. Using a compound-angle formula,

tan 5π
12 = tan

(
π
6 + π

4
)

=
tan π

6 + tan π
4

1 − tan π
6 tan π

4

=
√

3
3 + 1

1 −
√

3
3

=
( √

3
3 + 1

)2

1 − 1
3

= 2 +
√

3, as required.

4237. (a) The (x, y) plane is (horizontal, horizontal).
The vertical z axis is represented by the origin
O. Since there are no other forces acting in
the x direction, the reaction force at the hinge
acts only in the y direction. In plan view, the
forces on the door are:

x

y

O

125

100R

(b) Hinges ensure that a door can only rotate, not
translate. So, we need only consider moments
about the z axis. The forces are exerted at
distances 80 cm and 64 cm from the hinges.
Hence, the total moment around the hinges (z
axis) is 100 × 80 − 125 × 64. This is equal to
zero, so the door remains in equilibrium.

(c) i. Moments around the point of contact of the
125 N force give 64R = 16 × 100. So, the
component of R in the (x, y) plane is 25 N
in the positive y direction.

ii. There is also a component of R in the z

direction, which does not feature on the
above diagram. It counteracts the weight,
and has magnitude 200 N. In Newtons, the
total contact force is

R =

 0
25
200

 .

4238. We can assume, without loss of generality, that the
origin is the centre of rotational symmetry. Put
into algebra, h(−x) = − h(x). By the chain rule,

h(−x) = − h(x)
=⇒ − h′(−x) = − h′(x)
=⇒ h′′(−x) = − h′′(x).

The last line is the statement that the graph
y = h′′(x) has rotational symmetry around the
origin. qed.

4239. (a) By the binomial expansion,(
1 + h

x

)1
3

= 1 + 1
3

(
h

x

)
+

( 1
3
)(

− 2
3
)

2!

(
h

x

)2
+ ...

≡ 1 + h

3x
− h2

9x2 + ...

(b) Taking out a factor of x
1
3 ,

dy

dx
= lim

h→0

(x + h) 1
3 − x

1
3

h

≡ lim
h→0

x
1
3
(
1 + x

h

) 1
3 − x

1
3

h
.

Substituting the result of part (a), this is

lim
h→0

x
1
3
(
1 + h

3x − h2

9x2 + ...
)

− x
1
3

h

≡ lim
h→0

h
3 x− 2

3 − h2

9 x− 5
3 + ...

h

≡ lim
h→0

1
3 x− 2

3 − h
9 x− 5

3 + ...

Taking the limit, the second and all subsequent
terms tend to zero, leaving dy

dx = 1
3 x− 2

3 .

4240. Let y = a and b = x.
Consider the boundary equation of the inequality,
y = x2 − 4. The equation for intersections of this
with y = x4 is

x4 − x2 + 4 = 0.

This is a quadratic in x2. It has ∆ = −13 < 0, so
has no real roots. Hence, the quartic curve y = x4

does not intersect the parabola y = x2 − 4, and
must lie above it. So, if (x, y) is a point satisfying
y = x4, then (x, y) must also satisfy y > x2 − 4.
Written in the original algebra, this is

a = b4 =⇒ a > b2 − 4, as required.
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4241. If the counters are collinear, the line on which they
lie is horizontal, vertical, or has gradient ±1.

1 horizontal. There are four lines to choose
from. For each line, there are 4C3 = 4 ways of
choosing the locations of the counters. This
gives 16 possibilities.

2 vertical. As above, 16 possibilities.
3 gradient 1. The main diagonal (length 4)

offers 4C3 = 4 possibilities. The adjacent
diagonals (length 3) each offer 1 possibility.
This gives 6 overall.

4 gradient −1. As above, 6 possibilities.

The total is 16 + 16 + 6 + 6 = 44, as required.

4242. The graph of y = arctan x, with its tangent at
the origin and its two horizontal asymptotes, is as
follows:

x

y

The boundary cases for y = kx are the tangent
shown, which has gradient 1, and the x axis, which
has gradient 0. For 0 < k < 1, y = kx intersects
the curve three times. For all other values of k,
the origin is the only point of intersection. This
gives k ∈ (−∞, 0] ∪ [1, ∞).

4243. Rearranging the inequality,

P(X1 < 1 − X2)
≡ P(X1 + X2 < 1).

Since X1 and X2 are independent, the variable
Y = X1 + X2 is normally distributed, with mean
0 and variance 2. So, with Y ∼ N(0, 2), using the
normal distribution facility on a calculator,

P(Y < 1) = 0.760 (3sf).

4244. The quantity x2 + y2 is squared distance from
the origin of the (x, y) plane. So, we need the
shortest distance between the origin and the line
ax + by = c. This is along the normal bx − ay = 0.
Solving simultaneously,

ax + b · b
a x = c

=⇒ a2x + b2x = ac

=⇒ x = ac

a2 + b2 .

Substituting this back in,

y = bc

a2 + b2 .

At this point, the value of x2 + y2 is
a2c2(

a2 + b2
)2 + b2c2(

a2 + b2
)2

≡
(
a2 + b2)

c2(
a2 + b2

)2

≡ c2

a2 + b2 , as required.

4245. The result follows from the symmetry of the
graphs. Both x = |y| and x = 4 − 1

2 |y| have the x

axis as a line of symmetry, and each consists of two
straight line segments. They intersect at (8/3, 8/3),
forming a quadrilateral with a line of symmetry
through two of the vertices.

(8/3, 8/3)

(8/3, −8/3)

x

y

Such a shape is necessarily a kite.

4246. Breaking the position vector apart,

r =


1
2
0
4

 + t


2
0
1
0

 + t2


0

−4
0
3

 .

Ignoring the initial position, which isn’t relevant,
the displacement from the initial position is

s = t


2
0
1
0

 + t2


0

−4
0
3

 .

Converting to unit vectors for subsequent clarity,

s =
√

5t


2√
5

0
1√
5

0

 + 5t2


0

− 4
5

0
3
5

 .

The unit vectors are perpendicular, because they
have no components in common. Naming them i′

and j′, the path is

s =
√

5ti′ + 5t2j′.

This is a parabolic path in the plane containing
the perpendicular unit vectors i′ and j′.
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4247. Using a double-angle formula

y2 = 1
2 sin 2x.

The lhs is always positive, so wherever sin 2x < 0,
there are no points. Where sin 2x ≥ 0, we can take
the square root:

y = ±
√

1
2 sin 2x.

At roots of sin 2x, the tangent is parallel to the y

axis. The maxima are at y = 1. So, the graph of
y2 = sin x cos x is

x

y

π
2 π 3π

2

Despite appearances, these are not circles.

4248. Taking the positive square root,

y = 1
2

√
x2 + 9

=⇒ dy

dx
= x

2
√

x2 + 9
.

At x = 4, the gradient is 2
5 . This gives angle of

projection θ = arctan 2
5 . The components of initial

velocity are

ux = 5
√

29 cos θ = 25,

uy = 5
√

29 sin θ = 10.

At t = 0, the skier is at
(
4, 5

2
)
. So,

x = 4 + 25t,

y = 5
2 + 10t − 5t2.

Eliminating t,

y = 5
2 + 10

(
x − 4

25

)
− 5

(
x − 4

25

)2

=⇒ 250y = 193 + 116x − 2x2, as required.

4249. Using the factorial formula,
nCr + nCr+1

≡ n!
r!(n − r)! + n!

(r + 1)!(n − r − 1)!

≡ n!(r + 1)
(r + 1)!(n − r)! + n!(n − r)

(r + 1)!(n − r)!

≡ n!(n + 1)
(r + 1)!(n − r)!

≡ (n + 1)!
(r + 1)!(n + 1 − (r + 1))!

≡ n+1Cr+1.

This is the entry between nCr and nCr+1, in the
row below them. Hence, the formula given satisfies
the addition property of Pascal’s triangle.

4250. Using the identity tan θ ≡ cot(90° − θ), we can
express tan 50° as cot 40°. This gives

tan 10° × cot 40° = tan 20° × tan 30°.

Multiplying both sides by tan 40° gives

tan 10° = tan 20° × tan 30° × tan 40°, as required.

4251. (a) Quoting sin θ ≈ θ, a = 1.
(b) Setting up equality and differentiating twice,

sin θ = θ + bθ2 + cθ3

=⇒ cos θ = 1 + 2bθ + 3cθ2

=⇒ − sin θ = 2b + 6cθ.

Evaluating at θ = 0, b = 0.
(c) Equating the third derivatives, − cos θ = 6c.

At θ = 0, this is −1 = 6c, so c = −1/6. Hence,
the cubic approximation is

sin θ ≈ θ − 1
6 θ3.

4252. Putting each pair over a common denominator,
1

1 + 2x
+ 1

1 − 2x
+ 1

2 + x
+ 1

2 − x
= 0

=⇒ 2
1 − 4x2 + 4

4 − x2 = 0

=⇒ 2
(
4 − x2)

+ 4
(
1 − 4x2)

= 0

=⇒ x = ±
√

2
3 .

4253. (a) For k ∈ (0, 1), the function x 7→ x−k grows
asymptotically as x → 0. So, the integral must
be calculated as a limit:

A(k) = lim
p→0+

∫ 1

p

x−k dx

≡ lim
p→0+

[
1

1−k x1−k
]1

p

≡ lim
p→0+

(
1

1−k − 1
1−k p1−k

)
.

Since 1 − k > 0, the right-hand term tends
safely to zero as we take the limit. Hence, for
k ∈ (0, 1), the function A is well defined:

A(k) = 1
1−k .

(b) For k = 1, the function x 7→ x−k also grows
asymptotically as x → 0. So, the integral must
again be calculated as a limit:

A(k) = lim
p→0+

∫ 1

p

x−1 dx

≡ lim
p→0+

[
ln |x|

]1

p

≡ lim
p→0+

− ln p.

This limit diverges to positive infinity, so the
function A(k) is not well defined at k = 1.
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4254. By the factor theorem, g(x) has a factor of (x−α).
So, g(x) = (x − α) p(x), where p is a polynomial
function. By the product rule,

g′(x) = p(x) + (x − α) p′(x).

Substituting x = α gives g′(α) = p(α), which tells
us that p(α) = 0. Hence, p(x) must have a factor
of (x − α). We can now write g′(x) = (x − α) q(x).
Differentiating again,

g′′(x) = q(x) + (x − α) q′(x).

Evaluating at x = α gives q(α) = 0, so q(x) has
a factor of (x − α). This implies that g′(x) has
a factor of (x − α)2 and that g(x) has a factor of
(x − α)3.

4255. By the first Pythagorean identity, the value is 1.

4256. At point
(
p, p2)

, the normal has equation

y − p2 = − 1
2p (x − p).

Solving this simultaneously with y = x2,

x2 − p2 = − 1
2p (x − p)

=⇒ 2px2 + x − 2p3 − p = 0

=⇒ x = −1 ±
√

1 + 8p(2p3 + p)
4p

≡
−1 ±

√
(4p2 + 1)2

4p

≡ p, − 1
2p − p.

The latter is the x coordinate of P . For the least
value of this expression (x coordinate closest to O,
thus least value of y), we set its derivative to zero:

1
2p2 − 1 = 0

=⇒ p = ±
√

2
2 .

At p =
√

2
2 , the x coordinate of P is −

√
2, giving

y = 2. Hence, the minimum possible value of the
y coordinate of P is 2.

4257. The compound-angle formula is

tan(θ + ϕ) ≡ tan θ + tan ϕ

1 − tan θ tan ϕ
.

Setting θ = θ1 and ϕ = θ2 + θ3, and using the
notation given in the question,

tan(θ1 + θ2 + θ3)

≡ x + tan(θ2 + θ3)
1 − x tan(θ2 + θ3) .

Using the compound-angle formula again, this is

x + y+z
1−yz

1 − x y+z
1−yz

≡ x(1 − yz) + y + z

1 − yz − x(y + z)

≡ x + y + z − xyz

1 − xy − yz − xz
, as required.

4258. (a) The force diagrams are

5

R1

R3 F1

5

R2

R3 + F2

2
√

2

Resolving vertically, R1 = 5 and R2 = 7.
So, maximal friction is 5µ for the left-hand
block and 7µ for the right-hand block. For
the whole system, horizontal equilibrium gives
F1 + F2 = 2. Consider two cases:

1 If friction is limiting for both blocks, then
horizontal equilibrium gives 12µ = 2, so
µ = 1

6 .
2 If friction is limiting for one block but not

for the other, then the total friction is
F1 + F2 < 12µ. So 2 < 12µ, giving µ > 1

6 .
So, the minimum possible value of µ is 1

6 .

(b) We are only told that the system of the
two blocks together is in limiting equilibrium,
which does not distinguish between the cases
above. Examples are:

• µ = 1
6 . Maximal frictions are 5

6 N and 7
6

N. These are sufficient to counteract the
horizontal driving force of 2 N. The force
R3 between the blocks is 5

6 N.
• µ = 1

5 . Maximal frictions are 1 N and 7
5

N. So, the left-hand block is in limiting
equilibrium, and the force R3 between the
blocks is 1 N. This allows the frictional
force F2 on the right-hand block to be 1
N, which is less than maximal.

4259. (a) Solving for x intercepts,

tan x − 2 sec x = 0
=⇒ sin x − 2 = 0.

This has no roots, as 2 is outside the range of
the sine function. So, the curve does not cross
the x axis.
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(b) Setting the derivative to zero for sps:

sec2 x − 2 sec x tan x = 0
=⇒ sec x(sec x − 2 tan x) = 0
=⇒ sec x = 2 tan x

=⇒ 1
2 = sin x.

This gives sps at
(

π
6 , −

√
3
)

and
( 5π

6 ,
√

3
)
. The

second derivative is

d2y

dx2 = 2 sec2 x tan x − 2 sec x tan2 x − 2 sec3 x.

Evaluating at the sps,

x d2y
dx2 sp

π
6 − 4√

3 Max
5π
6

4√
3 Min

(c) The curve has vertical asymptotes where
cos x = 0, which is x = π/2, 3π/2.

(d) The y intercept is −2. Joining the dots, the
curve is

x

y

(
π
6 , −

√
3
)

( 5π
6 ,

√
3
)

4260. Call the cubic y = f(x). We know that f ′(x) is
a quadratic. Since there are stationary points at
x = p, q, this quadratic has roots at x = p, q.
Hence, f ′(x) = k(ax2 + bx + c), for some constant
k. Integrating this,

f(x) = 1
3 akx3 + 1

2 bkx2 + ckx + d.

The curve y = f(x) passes through the origin, so
d = 0. And it is monic, so 1

3 ak = 1. This gives
k = 3

a . Hence, the equation of the cubic is

y = x3 + 3b
2a x2 + 3c

a x.

4261. The centres of the circles are at(
2 cos kπ

3 , 2 sin kπ

3

)
.

The position vectors of the centres have length 2,
and their directions (anticlockwise from positive
x) are θ = 0, π

3 , .... This puts the centres at the
vertices of a regular hexagon of side length 2. The
circles have radius 1, which means that each pair
of adjacent circles is tangent at the midpoint of
the edges of the following hexagon:

x

y

4262. (a) If the quartic has a triple root at x = α, then
it has factor of (x − α)3. Taking this cubic out
of a quartic must leave a single factor, which
corresponds to a single root.

(b) By the binomial expansion,

(x + b)3 ≡ x3 + 3x2b + 3xb2 + b3.

So, the full expansion is

ax4 + (3ab + ac)x3 + (3ab2 + 3abc)x2

+ (ab3 + 3ab2c)x + ab3c.

(c) Equating coefficients of x4, a = 8. Equating
coefficients of x3 and x2,

24b + 8c = −4 =⇒ 6b + 2c = −1,

24b2 + 24bc = −6 =⇒ 4b2 + 4bc = −1.

Substituting for c,

4b2 + 4b
( −1−6b

2
)

= −1
=⇒ b = − 1

2 , 1
4 .

These give c = 1 and c = − 5
4 respectively.

Checking the coefficient of x0, the second set
of values don’t work. So, b = − 1

2 and c = 1.
The quartic has a triple root at x = 1

2 and a
single root at x = −1.

x

y

4263. We know that∫ k

0
f(x) dx +

∫ 0

−k

f(x) dx = 0.

We can reverse the direction of the second integral,
which corresponds to evaluating the same area in
the opposite direction. This gives∫ k

0
f(x) dx +

∫ k

0
f(−x) dx = 0.
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Combining the integrals,∫ k

0
f(x) + f(−x) dx = 0.

The integrand is a polynomial. The area beneath
it between x = 0 and x = k is zero for all k, so
it must be the zero polynomial. In other words,
f(x) + f(−x) = 0 for all x. Hence, f(−x) = − f(x),
meaning that y = f(x) has rotational symmetry
around the origin.

Nota Bene

The initial step can be shown more explicitly by
using the substitution X = −x. The minus sign
in dX = −dx cancels with the minus sign which
appears when reversing the order of the limits.

4264. Differentiating, g′(x) = aeax − bebx. Setting this
to zero for sps,

aeax − bebx = 0
=⇒ eax

(
a − be(b−a)x

)
= 0.

The first factor cannot be zero. So,

a − be(b−a)x = 0
=⇒ e(b−a)x = a

b

=⇒ (b − a)x = ln a
b

=⇒ x = 1
b−a ln a

b .

If the above solution to g′(x) = 0 exists, then g
has a stationary value. There are two conditions
to consider:

1 The above solution requires a ̸= b. However,
in this case, the function g is identically zero,
thus stationary, everywhere.

2 The above solution requires a
b > 0, which is

equivalent to saying that a and b must either
both be positive or both be negative.

Summarising the above, g(x) has a stationary
value iff a and b are both positive, both negative,
or both zero.

4265. (a) Substituting the x and y components, the first
Pythagorean trig identity gives

x2 + y2 = cos2 2t + sin2 2t = 1.

In the (x, y) plane, this is a unit circle. In a 3D
space, with no restriction on z, this unit circle
generates the curved surface of a cylinder.

(b) Differentiating,

r = cos 2ti + sin 2tj + 5tk
=⇒ v = −2 sin 2ti + 2 cos 2tj + 5k

=⇒ |v| =
√

4 sin2 2t + 4 cos2 2t + 25
=⇒ |v| =

√
29.

(c) In the (x, y) plane, the motion is circular. This
is combined with constant velocity in z, which
gives a helix or corkscrew.

4266. (a) The image of (1, 0) is(
a√

a2 + b2
,

b√
a2 + b2

)
.

The distance from the origin is√
a2

a2 + b2 + b2

a2 + b2 ≡
√

a2 + b2

a2 + b2 ≡ 1.

(b) Multiplying by a and b,

aX = a2x + aby√
a2 + b2

, bY = b2x − aby√
a2 + b2

.

Adding these, the terms in y cancel:

aX + bY = (a2 + b2)x√
a2 + b2

=⇒ x = aX + bY√
a2 + b2

.

Repeating the procedure,

bX − aY = (a2 + b2)y√
a2 + b2

=⇒ y = bX − aY√
a2 + b2

.

4267. The possibility space consists of 66 outcomes.
There are 6C3 = 20 sets of three different scores.
For each of these, there are 6!

2!2!2! = 90 different
orders. So, the probability is

p = 20 × 90
66 = 25

648 .

Alternative Method

The probability that the scores are aabbcc, in
that order, is

1 × 1
6 × 5

6 × 1
6 × 4

6 × 1
6 = 5

1944 .

The number of orders of aabbcc is
6!

2!2!2! = 90.

So, the number of orders of aabbcc in which e.g.
aabbcc and bbaacc are counted as one is

6!
2!2!2! × 3! = 15.

This gives p = 15 × 5
1944 = 25

648 .
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4268. Label the squares as follows

1 2 3
4 5 6
7 8 9

Let start, without loss of generality. Consider
the case that plays an even square. Without
loss of generality, say plays 2.

Then, if plays 1, is forced to play 9.

then plays 7, leaving with two lines of three to
cover, in squares 3 and 4.

cannot play in both shaded squares, so has lost.
Hence, if the first player plays in the middle, the
second player must play in a corner.

4269. (a) Differentiating the sum,

E(x) = 1 + x

1! + x2

2! + x3

3! + ...

=⇒ E′(x) = 1
1! + 2x

2! + 3x2

3! + ...

≡ 1 + x + x2

2! + ...

= E(x).

(b) Let y = E(x).

dy

dx
= y

=⇒
∫ 1

y
dx =

∫
1 dx

=⇒ ln |y| = x + c

∴ y = Aex.

So, the general solution is E(x) = Aex. Since
E(1) = e, A = 1, which means that E is the
exponential function x 7→ ex.

(c) From part (b), we know that

ex = 1 + x

1! + x2

2! + x3

3! + ...

Substituting x = 1,

e = 1 + 1
1! + 1

2! + 1
3! + ...

Splitting the sum into two parts,

e =
4∑

i=1

1
i! +

∞∑
i=5

1
i!

=⇒
∞∑

i=5

1
i! = e −

4∑
i=1

1
i! .

The latter sum is 65
24 . So,

∞∑
i=5

1
i! = e − 65

24

= 0.009948...

<
1

100 , as required.

4270. The rhs is positive. In the original equation, each
factor is individually positive. But this is the same
as making the whole product positive. So, consider

y = |(x − 1)(x − 2)(x − 3)|.

Removing the mod signs, y = (x−1)(x−2)(x−3)
is a positive cubic with single roots at x = 1, 2, 3.
We then apply a mod function, making all negative
y values positive. Hence, the curve is

x

y

1 2 3

4271. Since the vertical asymptote is at x = −1, this is a
root of the denominator. So, c = 4. As x → ∞, the
curve tends to the oblique asymptote y = 1

2 x − 1
4 .

So, the equation of the curve must be expressible,
for some constant k, as

y = 1
2 x − 1

4 + k

4x + 4 .

Putting this over a common denominator,

y =
( 1

2 x − 1
4
)
(4x + 4) + k

4x + 4

≡ 2x2 + x − 1 + k

4x + 4 .

So, a = 2 and b = 1 (and k = 1). The equation of
the curve is

y = 2x2 + x

4x + 4 .
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4272. Rearranging and squaring the first equation, we
have sin2 x = 2 cos2 y. The first Pythagorean trig
identity gives

1 − cos2 x = 2(1 − sin2 y)
=⇒ cos2 x = 2 sin2 y − 1.

Rearranging and squaring the second equation,

2 cos2 x = 16 − 16
√

3 sin y + 12 sin2 y

=⇒ cos2 x = 8 − 8
√

3 sin y + 6 sin2 y.

Substituting for cos2 x,

2 sin2 y − 1 = 8 − 8
√

3 sin y + 6 sin2 y

=⇒ 4 sin2 y − 8
√

3 sin y + 9 = 0

=⇒ sin y =
√

3
2 , 3

√
3

2 .

The latter has no roots, as 3
√

3/2 > 1. The former
gives y = π/3, 2π/3. Substituting back in, the (x, y)
pairs are (π/4, π/3) and (7π/4, 2π/3).

4273. We are given u1 = a and un = b. If a = b = 0, then
the sequence is the zero sequence and all terms are
trivially known. So, we can assume that a, b ̸= 0.
Using the ordinal formula for a gp, b = arn−1,
which we can rearrange to rn−1 = b

a . Call this
equation E. We know the values of a, b and n,
but cannot necessarily solve E for r. Consider the
parity of n:

• If n is even, then n − 1 is odd and so E has
exactly one real root. Any term of the gp can
therefore be calculated with certainty.

• If n is odd, then n − 1 is even and E has
exactly two real roots r = ±R. Nevertheless,
r2 is known with certainty. So, since we know
the first term, we also know the third term,
and every subsequent odd-numbered term.

In both cases, we know terms of the form u2k+1,
for k ∈ N, with certainty.

4274. The magnitude of the vector is√
tan4 t + 3 sec2 t

≡
√

tan4 t + 3(1 + tan2 t)

≡
√

tan4 t + 3 tan2 t + 3.

Since tan4 t and tan2 t are both squares, each is
non-negative. So, the radicand is never less than
3. Hence, |b| is never less than

√
3.

Alternative Method

The range of the sec function is (−∞, −1]∪ [1, ∞).
So, | sec t| ≥ 1 for all t. Hence, the j component of
b has magnitude at least

√
3.

Adding an i component to this can only increase
the magnitude. So, |b| ≥

√
3, as required.

4275. Classifying by the largest number of black beads
n in a single group, the arrangements, with the
white counters represented as dots, are as follows:

n 4 3 2 1
bbbb.... bbb.b... bb.bb... b.b.b.b.

bbb..b.. bb..bb..
bb.b.b..
bb.b..b.

All other arrangements are reflections or rotations
of one of the above. So, there are eight bracelets.

4276. (a) Using the product rule,

y = x2ex

=⇒ dy

dx
=

(
2x + x2)

ex

=⇒ d2y

dx2 =
(
2 + 4x + x2)

ex.

Setting the first derivative to zero, there are
sps at x = 0, −2. The second derivatives are
respectively 2 and −2e−2. So, there is a local
minimum at the origin, and a local maximum
at

(
−2, 4e−2)

.
(b) The only axis intercept is a double root at the

origin. As x → ∞, y → ∞. And as x → −∞,
y → 0+. So, the curve is

x

y

(
−2, 4e−2)

4277. (a) With the ladder at its greatest angle to the
vertical, friction is limiting: Fmax = µRfloor.
The force diagram is

mg

Rfloor

Rwall

µRfloor

θ

θ

A

Let the ladder have length 2 m.

↕ : Rfloor − mg = 0
↔ : Rwall − µRfloor = 0
↷
A : Rwall · 2 cos θ − mg · 1 sin θ = 0.

The first two equations give Rfloor = mg and
Rwall = µmg. Rearranging the third,

tan θ = 2Rwall

mg
= 2µmg

mg
= 2µ.

So, the greatest angle is arctan 2µ.
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(b) Let the ladder be in limiting equilibrium, with
a person of mass M at the top, a load of mass
a at A, and θ as in part (a).

mg

Rfloor

Rwall

µRfloor

Mg

ag

θ

θ

A

The equations are

↕ : Rfloor − mg − Mg − ag = 0
↔ : Rwall − µRfloor = 0
↷
A : 2Rwall cos θ − 2Mg sin θ − mg sin θ = 0.

Rearranging the moments equation,

2Rwall cos θ = sin θ(2Mg + mg)

=⇒ Rwall = 2Mg + mg

2 tan θ

= (2M + m)µg.

So, Rfloor = (2M +m)g. Substituting this into
the vertical equation,

(2M + m)g − mg − Mg − ag = 0
=⇒ a = M.

So, to allow a person of mass M to reach the
top, a load of mass M must be fixed at the
bottom.

4278. Rewriting the second term,

x − 1
x + 1 ≡ x + 1 − 2

x + 1 ≡ 1 − 2
x + 1 .

This tends to 1 as x → ±∞. The curve approaches
y = x2 + 1 from below as x → ∞ and from above
as x → ∞. In between, it has a single asymptote
at x = −1. So, the curve is

x

y

−1

4279. The faces are equilateral triangles, with three
edges. So, the ant can’t return to A by walking
the perimeter of a face. The only paths that get
the ant back to A circumnavigate the octahedron.
They are “great squares”. (I refer here to the fact
that e.g. the equator is a great circle of the globe.)
There are four such great square paths from A,
one starting with each of B, D, E, F . The ant will
certainly choose one of these vertices to start with.
Suppose it is B, without loss of generality.
At B, the ant has three edges to choose from, of
which one, C, is successful. At C, the ant again
has three edges to choose from, of which one, D,
is successful. At D, the ant again has three edges
to choose from, of which one, A, is successful. So,
the probability is (1/3)3 = 1/27.

4280. Rearranging, the differential equation is

dx

dt
= 2x

t
− t2x2.

By the quotient rule,

x = 5t2

t5 + c

=⇒ dx

dt
=

10t(t5 + c) − 5t2(
5t4)

(t2 + c)2

≡ 10ct − 15t6

(t2 + c)2 .

The rhs of the differential equation is

2x

t
− t2x2

= 10t

t5 + c
− t2

(
5t2

t5 + c

)2

≡ 10t(t5 + c) − 25t6

(t5 + c)2

≡ 10ct − 15t6

(t5 + c)2 .

Hence, the proposed equation is a solution curve
of the differential equation, as required.

4281. (a) Firstly, consider p2 and q2. These are

p2 = x2 + 2xy + y2,

q2 = x2 − 2xy + y2.

Adding and subtracting these equations,

p2 + q2 = 2
(
x2 + y2)

,

p2 − q2 = 4xy.

This gives

x2 + xy + y2 = 1
2
(
p2 + q2)

+ 1
4
(
p2 − q2)

≡ 3
4 p2 + 1

4 q2.
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(b) The equation of the curve is
3
4 p2 + 1

4 q2 = 1.

As a stretched version of p2+q2 = 1, this is the
equation of an ellipse in the (p, q) plane. The
variables p and q are proportional to position
along the axes y = ±x. So, the equation is an
ellipse, whose major and minor axes are those
lines:

x

y

q

p

4282. Call the upwards acceleration a. After time t, the
height is h = 1

2 at2, and the (upwards) velocity is
v = at. Upon letting go at time t, these are the
initial conditions for projectile motion. Landing
speed V is given by

V 2 = v2 + 2gh

= a2t2 + agt2.

Taking the positive square root,

V = t
√

a2 + ag ∝ t, as required.

4283. In each case, the number of x intercepts and the
number of vertical asymptotes correspond to the
number of roots of the numerator and the number
of roots of the denominator.

(a) The numerator has one root; the denominator
has two roots. The graph has one x intercept
and two vertical asymptotes.

(b) Both numerator and denominator have two
roots. So, the graph has two x intercepts and
two vertical asymptotes.

(c) The numerator has one root; the denominator
has no (real) roots. So, the graph has one x

intercept and no vertical asymptotes.

4284. The scenario, rotating 30° anticlockwise, is

x

y

A

B

(a) Consider the marked point of intersection in
the second quadrant. The left-hand edge of
the first triangle is parallel to the y axis. The
top edge of the second triangle is parallel to
the x axis. These edges are perpendicular. By
symmetry, there are also two other matching
points of intersection where the triangles meet
at right-angles.

(b) Consider the other marked intersection. The
direction of this point from O is the mean of
the directions of A and B. Anticlockwise from
the positive x axis, these are 120° and 30°, so
the direction of the intersection is 75°. The y

coordinate is the same as that of B, which is 1
2 .

So, the distance from the origin is 1
2 cosec 75°.

4285. Consider the function f(x) = x3 − x2 + x. Its
derivative is

f ′(x) = 3x2 − 2x + 1.

This is a positive quadratic with ∆ = −8 < 0.
So, it is always positive. Hence, the function f is
increasing everywhere. Therefore, if p > q, then
f(p) > f(q). Written out in full, this is

p > q =⇒ p3 − p2 + p > q3 − q2 + q.

4286. The graph is akin to y = sin2 x, which, according
to a double-angle formula, is y = 1

2 (1 − cos 2x).
The difference is that the x intercepts of y = sin4 x

represent quadruple roots, as opposed to double
roots. So, the minima are more snub-nosed than
the maxima:

x

y

1

π

4287. (a) This cannot be determined with the info in the
question. The fan-belt is a closed loop, so it
could be tightened to arbitrary tension.

(b) As above, this cannot be determined.
(c) Taking Nii around the fan-belt, the unknown

tensions cancel, as do the weights of the two
buckets. All that remains is the driving force
and the weight of the liquid: 8g − mg = 0. So,
each full bucket carries 8 kg of liquid.

4288. This is a quadratic in t
1
3 :

t
1
3 = 2 + 15t− 1

3

=⇒ t
2
3 − 2t

1
3 − 15 = 0

=⇒
(
t

1
3 + 3

)(
t

1
3 − 5

)
= 0

=⇒ t
1
3 = −3, 5

=⇒ t = −27, 125.
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4289. Subtracting the two equations,

x4 − x2 = 0
=⇒ x2(x + 1)(x − 1) = 0
=⇒ x = 0, ±1.

This gives four points of intersection at (±1, 0) and
(0, ±1).
To prove that these four are points of tangency,
consider x4 + y2 = 1 in the positive quadrant.
Since x4 and y2 are both positive, we know that
x ∈ [0, 1]. Therefore, x4 ≤ x2. Hence, any point
on the curve x4 +y2 = 1 must lie on or outside the
unit circle x2 + y2 = 1. This guarantees that the
points of intersection are points of tangency.

x

y

4290. The scenario is

A

B

C
D

E

F

G

H

I
J

K

L

The angle at the centre is subtended by three out
of twelve edges, and is therefore a right angle. So,
by the angle at the centre theorem, ∠BFK = 45°.

4291. Since x2 ≡ |x|2, we can factorise as follows:

x2 + |x| − 6 = 0
=⇒ |x|2 + |x| − 6 = 0
=⇒

(
|x| + 3

)(
|x| − 2

)
= 0

=⇒ |x| = −3, 2.

The former gives no roots, so x = ±2.

4292. This is a quadratic in xy.

xy + 1
xy

= 4

=⇒ (xy)2 − 4(xy) + 1 = 0

=⇒ xy = 4 ±
√

12
2

= 2 ±
√

3.

So, the graph consists of two reciprocal graphs.
Since both roots 2 ±

√
3 are positive, the graph

has two branches in the positive quadrant, and two
branches in the negative quadrant:

x

y

4293. (a) This is a two-tailed test, giving the alternative
hypothesis as H1 : p ̸= 0.34.

(b) For a sample of 50, under the assumption of
H0, the distribution is X ∼ B(50, 0.34). The
critical region is split into 2.5% at each tail.
Using the binomial facility on a calculator,

P(X ≤ 10) = 0.0227 < 0.025,

P(X ≤ 11) = 0.0467 > 0.025.

So, the critical value at the lower tail is 10. At
the upper tail,

P(X ≥ 23) = 0.0141 < 0.025,

P(X ≥ 24) = 0.0282 > 0.025.

So, the critical value at the upper tail is 24.
The critical region is all values including and
outside the critical values:

{k ∈ N : 0 ≤ k ≤ 10} ∪ {k ∈ N : 24 ≤ k ≤ 50}.

(c) The sample statistic x = 11 does not lie in the
critical region, so there is insufficient evidence,
at the 5% level, to reject H0. It seems that the
null hypothesis holds.

(d) The test statistic x = 11 does provide evidence
against H0. From only the first sample, this is
insufficient: the conclusion is that H0 is not
rejected. But a second sample provides more
evidence against H0.
The combined sample does, in fact, provide
sufficient evidence to reject H0. Grouping with
n = 100 and x = 22, the p-value is 0.00621,
which is a long way below 0.025.
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4294. Using the second Pythagorean trig identity,∫ π
4

0
tan2 x dx

=
∫ π

4

0
sec2 x − 1 dx

=
[
tan x − x

] π
4

0

=
(
1 − π

4
)

−
(
0 − 0

)
= 1 − π

4 , as required.

4295. Rearranging and squaring both sides,

y = 1
(x + 1)2(x − 1)2 .

This has double asymptotes at x = ±1, and tends
asymptotically to the x axis. Its graph is what the
student drew:

x

y

−1 1

But what the student has forgotten is that we have
introduced new solution points by squaring. The
original curve has no points where x2 − 1 < 0,
which is for −1 < x < 1. The correct graph is

x

y

−1 1

4296. For period 2, we require xn+2 = xn. Setting this
equation up,

x = a

b − a
b−x

=⇒ x = ab − ax

b2 − bx − a

=⇒ x(b2 − bx − a) = ab − ax

=⇒ bx2 − b2x + ab = 0.

If b = 0, then a = ±1 exhibits period 2 behaviour.
If b ̸= 0, we can divide by it, giving x2 −bx+a = 0.
For roots, we require b2 − 4a ≥ 0, so b2 ≥ 4a.

4297. (a) This is true. The graph is akin to x2 + y2 = 1.
(b) This is false. However large the value of x,

there is always a value of y which will satisfy
x5 + y5 = 1. The graph tends asymptotically
to y = x.

(c) This is true. The graph is akin to x4 + y4 = 1.

4298. Since k1, k2 are integers, the graph is periodic. It
has period 2π

k , where k = lcm(k1, k2). The graph
is non-constant and has no discontinuities, so there
are at least two sps in each period, one minimum
and one maximum. So, since there are infinitely
many periods, there must be infinitely many sps.
qed.

4299. The normal passes through
(
p, p2)

with gradient
− 1

2p . So, it has equation

y − p2 = − 1
2p (x − p).

Solving simultaneously with y = x2,

x2 − p2 = − 1
2p (x − p)

=⇒ 2px2 + x − p − 2p3 = 0

=⇒ x = −1 ±
√

1 + 8p2(1 + 2p2)
4p

= −1 ±
√

(4p2 + 1)2

4p

= −1 ± (4p2 + 1)
4p

= p,
−2p2 − 1

2p
.

The former is the original point
(
p, p2)

. The latter
is the re-intersection, which occurs at

y =
(

−2p2 − 1
2p

)2

≡ (2p2 + 1)2

4p2 .

4300. Values at which the mod functions switch on are
at y + x − 1 = 0 and y − x = 0. These are a pair of
perpendicular lines. Anywhere except for on these
lines, the locus of R must consist of straight line
segments. The four straight lines segments are

(y + x − 1) + (y − x) = 1 =⇒ y = 1,

(y + x − 1) − (y − x) = 1 =⇒ x = 1,

−(y + x − 1) + (y − x) = 0 =⇒ x = 0,

−(y + x − 1) − (y − x) = 0 =⇒ y = 0.

This gives the locus as a unit square:

x

y

End of 43rd Hundred


